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Calculations are carried out of the dynamic forces and viscous heating when a 
layer of Newtonian liquid at the bottom of a rigid container is extruded 
through a matrix in the form of a circular opening or a narrow slit. 

The extrusion of a material through a matrix in the wall of a container is one of the 
most widely used technological processes carried out under pressure. A calculation of the 
necessary forces for this operation for plastic materials has been carried out in a number 
of papers (reviews are given in [i, 2]). The problem of the rapid extrusion of a thin 
layer of a nonlinearly viscous medium through a narrow slit or a circular opening of finite 
length I has not been investigated in great detail. Apart from a prediction of the forces 
required to achieve this process, it is of interest to analyze the heating that occurs, 
since it is particularly important to know this when working with explosive materials. 

We will obtain the velocity, pressure, and temperature distributions of solving the 
problem of the extrusion of an incompressible Newtonian liquid through a matrix, assuming 
the liquid to obey a power rheological law [3] 

where m is the index of the Newtonian behavior of the material, and takes the value of the 
dynamic viscosity ~ when n = 1 (when n = 0 we assume m = Zs -- the yield point of an ideal- 
plastic medium to shear). 

A physical mode] of the phenomenon considered and the system of coordinates used are 
shown in the figure. There is a circular opening of radius ro << I (or a longitudinal slit 
of width 2to)along the axis of symmetry of a container with a base radius R (or half-thick- 
ness R in the case of plane deformation of the layer). At the initial instant of time the 
layer of liquid of thickness ~o << R is set in motion due to the axial displacement of a 
rigid instrument (a die) of mass M with velocity wo < 0. We will assume that there is no 
friction between the side walls of the container and the die, and that the slowing down of 
the latter is due exclusively to the action of the viscous forces that occur due to the flow 
of liquid inside the opening and in the gap between the bottom of the container and the 

ins trument. 

We will confine the analysis to the case of a narrow opening ro << R. Then the whole 
region of flow can be divided into two separate parts -- the flow inside the opening and 
in the gap between the container and the die, in each of which the motion of the liquid 
will be assumed to be steady-state. In fact, in this case arrangement of the flow from 
predominantly radial to axial is localized in a region of dimensions %ro, where the time 
of this process ~poro=~ -: is small compared with the characteristic extrusion time of the 
layer ~olwoI -I, if the viscosity of the liquid is fairly high (~10a-104 P). 

i. We will determine the pressure po for the liquid to flow into the opening. In 
the case of noninertial motion (Re = poVrou -I << i) the equations of hydrodynamics, describing 
the flow of the liquid inside the opening, can be written as 

Op 1 a ( ov ~-~ ov ) a__p_p = o  ' 
Oz r ~ a~ rkm T or ' Or 

p(O) = po, V(ro) = V ( .  ro) = O, (1 )  

where the index k = 1 for a circular opening and k = 0 for a plane slit. 
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Fig. i. Sketch of 
the extrusion of a 
liquid from a con- 
tainer (K) by the 
axial displacement 
of a die (M)~ r0z 
is the system of 
coordinates. 

We will represent the velocity of the liquid in the form of the function 

V = V m ( 1 --  [rr'$ l l(n-E" 1 )/n), (2) 

which satisfies the conditions of adhesion to the walls of the opening. Substituting V(r) 
into (i) and using the condition for material balance, we obtain an equation for p(z), by 
integrating which for m= const, we obtain 

p o = p ~ + ( n ( 2 - J - k ) + l (  R ) h+' ) ' z ( k + l ) m l  
-- l w [  , (3) 

nro ro r o 
where Pa is the surrounding (atmospheric) pressure at the exit from the opening, 

We will now analyze the motion of the liquid in the gap between the container and the 
die. When 6<<R and Re = pou~ -: << i the equations of hydrodynamics can be written, with 
an accuracy ~(6/R) 2 , in the form 

ap a (  au .-,~au ) ap 
Or az -ffZ-Z az az 

O___v_v = 1 0 (r~u), p(ro) = Po, 
Oz r k Or 

~ 0 ,  

(4) 

u(r, O)= u(r, 6)= u(R, z)= v(r, O)= O, v(r, 6)= w. 

It follows from (4) that the equations of motion and the boundary conditions are satisfied 
by the following velocity field: 

u - -  f (r,  6) (1 -- l1 - -  2z6-11<~+1)/"),  

_ r , 

f---- (n-+-l)(k-+-l) -6 \ (5) 

w 1---)( 2z6 . . . .  n ( l q :  [1-- ~ Ic'~ v = 2 ( n +  (2n+ I) 

(-- for 0~<z~<8/2; + for 8/2~<z~8). 

Substituting u(r, z) into the equation of motion (4) in the projection onto the r axis, 
we obtain the pressure distribution at the end of the punch 

P=po+HIi (~) ,  ~=r/R,  ~o=ro/R, 

/7=( 2 2 n + l )  ~ 2mlwl~R~+ ' 
k +----~ n 62n+ 1 ' (6) 

and the average pressure acting on the layer from the side of the die 

1 

(k-+- 1)/7/s , I~= .( l~C~)~kd~. (7) 
< P ) = Po + (1 -- ~Jo)(l + ~o) k ~o 
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For plane deformation of the layer we obtain values of the integrals and the specific com- 
pressing load on the instrument 

l l ( ~ ) :  ( 1 - -  ~~ ( 1 - -  ~)"+l ", l . .= (1 - -~~  

n + l  n + 2  ' (8)  

Hh=o (1 -- Eo) n+' <P> = Po q- ~ - ' ~  ~ �9 

In the case of axisymmetrical deformation, integrals I~ and I= can be evaluated only for 
integer values of n (including n = 0). For arbitrary n they can easily be found by any 
numerical methods. 

Using the differential form of Newton's second law, we obtain the following equation 
describing the slowing down of an absolutely rigid die: 

M~dw/d6 : ( < p > - -  p~) S, 

S = (~RP R (2a)!-k,  w (~ )  = wo. 

I n  d i m e n s i o n l e s s  v a r i a b l e s  x = 6o/~ and y =W/Wo, t h e  s o l u t i o n  o f  (9) can  be  w r i t t e n  a s  

(9) 

y = [1 - -  (2 - -  n) [3((x 2 ~ -  1)/2n + A(1 - -  X-'))l'/(2--n), 

[~ = SA,6o (Mw~)-', A = A, AT', 
" - (io) 

A, = ( 2 9 n + l ) ~  2m(k+l)Rn+tlWol~l~x2,,.,. , 
k 1 n (1 --~o)(l+~o)~uo ' 

{n (2 + k) + 1 /"  (k + 1)mllwol ~ 

Wq~en compressing a layer with a constant force F = (<p> -- pa)S the equation representing 
the slowing down of the die has the form 

y = [~i(X 2"+1 "-~ A)-i] l/2n, ~t : F/SAi .  (ii) 

2. We will obtain equations for the dissipative heating of the liquid in the gap 
between the container and the die. For flow with large values of Pe = p oCplWI6~7 x >> 1 (a 
non-heat-conducting liquid) the heat-balance equation can be written in the form 

I dO, ~ = m  du .+1, 
Po% [ dt  ]rO,z . ~ r, z 

(12) OZ 
z~ (Y)r =~ 

r(r*,z*, 0 ) = r  ~ z(r*,z% 0 ) = z * ,  

0, ( r*, z*, 0) = 0, 

where the upper index 0 denotes the Lagrangian coordinates of the particles of the medium 
at the initial instant of time t = 0. 

It follows from (5) that the maximum heating of the liquid is observed at the point 
of discharge r = re and z = 0, 6/2. In order to avoid discontinuous solutions when n= 0, we 
will obtain an equation for the average temperature of the liquid over the thickness of the 
layer at the point of maximum r = re 

( 2 n q - I ) n  2n+~mlwolnR n+' 
< Ol > - -  n ' ~ +  1) ( k +  l) po%6~.+ l ( [oh- - [o)  n+l 13(x), (13) 

x 

la(x) = S y" x2"dx" 
1 

Substituting (i0) into (13) we can obtain the variation of <81>(x) for arbitrary action 
over the layer of liquid material. The following methods of processing under pressure are 
of interest: compression of a layer at constant velocity and extrusion with a constant 
force. In the first case y-I and I3 = (2n+l)-1(x 2n+x -- i), and in the second we use Eq. 
(ii) and obtain 
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f3 = ~, (2n + 1)-t In [(x2n+ ~ + A) (1 + A)-q. 

To ca!culate the adiabatic heating of the liquid for flow inside an opening we return to 
the equation of inflow of heat 

d0~ : m OV I~+ 1, 0o% d! Or ~ 02(0)=<0t>. (14) 

If follows from Eq. (2) for the velocity distribution V(r) that maximum liquid heating 
occurs at the exit from the opening z =--l at points r = • For n = 0 the maximum tempera- 
ture is indeterminate. Hence, we will derive an equation for the average heating of the 
liquid over the cross section of the opening at the point of maximum z =--l, using the 
expression relating the level of the liquid in the opening with the flow of the liquid 
layer Ill =6o~-(k+I)(i -- x-~). We finally obtain 

( 0., > = < Ol > + HI~ (x), I4 (x) = i y'~ x-Zdx' 
1 

H : (n(2 + k)+ l ) n2km6~ ~[(.+O(~+D 
~---/7~7~2~+ ~ 

n VO~p.O " 

Let us consider some special methods of processing the layer. 
a constant velocity I, = 1 -- x-~; for extrusion with constant force 

X 

& = ~t ,[ x-~(x 2~+' + A) -ldx. 
1 

This integral can be evaluated when n = 0 and gives 

A -1 (1 - -  x -9  + A -z In [(x -6 A)x-t(l -6 A)-q. 

(15) 

For compression with 

We will analyze the relations obtained for dissipative heating of the material. 

As can be seen from (13) and (15), the liquid is more strongly heated when there is 
axial symmetry of the flow than when there is plane symmetry. This is due to the conver- 
gence of the radial flow, in which case the energy of motion gradually accumulates at the 
point where the liquid material discharges. 

For example, in the case of compression at constant velocity [Wol $1 m/sec of a 
pseudoplastic material with n=0.5, m=103 Pa.sec I/2, 9oCp=2.0"I0 ~ J/m -deg K, in theform of 

a layer 6o =2"10 -3 m in a container with ro = 10 -3 m and R = 10 -2 m~ we find when x = i0 values 
of <01> =385~ for k=l and 30~ for k=0. 

We will compare the maximum heating for the inflow and outflow of a liquid from an 
opening when the layer is compressed with constant velocity 

(0t)(02______~__1 + (2n+ l ) (k+ l)(n+l) ( n(2+k)+ l )n( 6~ ) '-h 2n-61 Z a(~, 

a(x) : ( x - -  1)/x(x 2~+~-- 1). 

The f u n c t i o n  ~ (x )  d e c r e a s e s  m o n o t o n i c a l l y  f rom i t s  g r e a t e s t  v a l u e  ( 2 n + 1 )  -1 f o r  x = 1 t o  
0 a s  x §  Hence ,  a t  t h e  b e g i n n i n g  o f  t h e  c o m p r e s s i o n  t h e  r a t i o  b e t w e e n  <e2> and <Sx> a s  
a who le  i s  d e t e r m i n e d  by  t h e  r a t i o  6 o / r o .  When 60 > ro  t h e  h e a t i n g  o f  t h e  l i q u i d  i s  p r i m a r -  
i l y  due  to  t h e  f l o w  i n s i d e  t h e  o p e n i n g .  Fo r  h i g h  d e g r e e s  o f  c o m p r e s s i o n  t h e  l a y e r  o f  l i q u i d  
i s  m a i n l y  h e a t e d  due  t o  e n e r g y  d i s s i p a t i o n  i n  t h e  gap b e t w e e n  t h e  d i e  and t h e  c o n t a i n e r .  

I n  c o n c l u s i o n ,  we w i l l  compare  t h e  maximum h e a t i n g  i n  c o n v e r g i n g  and d i v e r g i n g  f l o w s  
o f  a l i q u i d  m a t e r i a l .  I n  t h e  f i r s t  c a s e  we u s e  Eq. ( 1 3 ) ,  and i n  t h e  s e c o n d  we u s e  t h e  
results of a solution of the hydrodynamic problem of the free flow of a layer of an incom- 
pressible Newtonian liquid when a load is applied axially [4] (there is no central opening 
and no side walls). It is shown in [4] that for a diverging flow geometry the temperature 
maximum of a non-heat-conducting liquid is reached at the periphery of the die r = R. Using 
the results obtained in [4] or Eq. (5) directly, in which f(r, 6) must be put equal to 
(2n+l) IwIR/(n+l)(k+l)6, we obtain, other conditions being equal, that the ratio of these 
temperatures is 
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<o,>,o+O ' 

For plane deformation of the layer (k = 0) the maximum heating in both cases is approxi- 
mately the same. A different picture (~ ~ i) is observed in the case of axisymmetrical 
deformation, since ~o ~ I. The result obtained is a consequence of the accumulation of 
energy in the converging flow of viscous material. 

NOTATION 

r, z, axes of a Cartesian (k = 0) or a cylindrical (k = I) system of coordinates; u, v, 
velocity components of the liquid in the directions r and z, respectively; V, velocity of 
the liquid in the opening; p, pressure; el and 8=, temperature of the liquid under the die 
and in the opening; m, n, rheological constants of the material; T, tangential stress; ~, 
shear velocity; po, Cp, %o, density, heat capacity, and thermal conductivity of the liquid; 
S, M, w, area of the working surface, mass and velocity of motion of the die; ro, l, a, R, 
linear dimensions of the matrix and the container; F, operating force on the instrument; 
Re, Pe, similitude criteria. 
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